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Flow separation on a p-plane 

By LEE-OR MERKINE 
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 

(Received 3 May 1979) 

Boundary-layer structure of prograde and retrograde rotating flows past a cylinder 
on a P-plane is investigated. It is found that /3 inhibits boundary-layer separation for 
prograde flows but it exerts no influence on the boundary-layer structure for retro- 
grade flows. The results agree with the few available experimental observations. 

1. Introduction 
In an experimental study of slightly viscous prograde (eastward) flow past a right 

circular cylinder in a rotating system on aP-plane, White (1 97 1) obtained a qualitative 
agreement with theoretical results based on inviscid considerations. The experimental 
evidence presented is rather limited but it seems that flow separation is inhibited 
although the Reynolds number based on the radius of the cylinder is 90.t In non- 
rotating systems separation occurs for Re 2: 2 - 2  (Coutanceau & Bouard 1977). 
Recently Merkine & Solan ( 1979) determined the boundary-layer structure of flow 
past a cylinder in a rotating system on an f-plane. Their analysis indicates that rotation 
inhibits separation only if the spin-down of vorticity induced by the horizontal 
Ekman layers is comparable to the advection of vorticity in the vertical boundary 
layer along the cylinder. The flow remains fully attached provided E$/(2*Ro) > 1,  
where Ro and E, are the appropriate Rossby and Ekman numbers defined in $ 2 .  
If Et/Ro < 1 the inhibiting effect of the horizontal Ekman layers disappears and the 
vorticity dynamics in the vertical boundary layer is identical to that of the classical 
non-rotating case regardless of the smallness of the Rossby number.$ In  White's ex- 
periments E:/(24Ro) u 0.15 yet separation seems to be inhibited. These experiments 
are characterized by the presence of the /3-effect which accounts for the variability 
of the Coriolis parameter. It introduces a new O ( p )  vorticity source which influences 
the boundary-layer dynamics and consequently the phenomenon of flow separation. 

It is the purpose of the following analysis to investigate the influence of /3 on the 
flow separation probIem. We restrict oursefves to the parameter space for which 
E$/Ro < 1 such that the influence of the secondary circulation induced by the Ekman 
layers can be neglected and the problem can be treated as two dimensional. 

t The kinematic viscosity is not specified in the experiments. We assumed it to be 0.01 cm2 s-l 
as appropriate to water a t  temperature of 20 "C. 

$ The calculations of Merkine & Solan (1979) were repeated as R result of a recently discovered 
syntax error in the computer program. Slight quantitative changes which did not affect the con- 
dition for flow separation were found. The new drawings will be supplied by the authors upon 
request. 
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2. Formulation 
We consider a steady homogeneous flow past a right circular cylinder of radius R 

with generators parallel to the axis of rotation. The cylinder extends throughout the 
depth of the fluid. The 2 axis of a right-handed Cartesian co-ordinate system coincides 
with the axis of the cylinder and the y axis points poleward. The dependence of the 
Coriolis parameter, f, on latitude is introduced through the P-plane approximation, 
i.e. f = f, +p’y. The flow, which is unbounded laterally, approaches the cylinder with 
a uniform prograde or retrograde velocity U ,  i.e. in the positive-x (eastward) or nega- 
tive-x (westward) direction respectively. 

For reasons discussed earlier the flow field can be considered horizontal and con- 
sequently it is governed by the two-dimensional vorticity equation, which in non- 
dimensional form can be written using polar co-ordinates as 

a i a  1 
u,-((5+/3rsin8)+ue- ar r 88 -(c+prsin8) = -v~c ,  Re 

u, and ug are the radial and azimuthal components of velocity respectively and (5 is 
the vertical component of the relative vorticity. The continuity equation 

can be satisfied by introducing the stream function + such that 

=-- -  1 a+ a+ 
r u e = a , ,  (4) 

The radius of the cylinder R and the upstream velocity U were chosen as the relevant 
scales; Re = U R / v  is the Reynolds number of the flow. It is the ratio of the Rossby 
number Ro = U / ( f , R )  to the horizontal Ekman number E ,  = v/(f,,R2). The no-slip 
boundary condition a t  the wall requires that 

ur=ug=O on r =  1.  (6) 

(7)  

Away from the cylinder the upstream velocity should be approached, i.e. 

(u,, Ue) + & ( C O S ~ ,  -sin@, 

where the + and - correspond to prograde and retrograde flow conditions respect- 
ively. We restrict ourselves to slightly viscous flows such that viscous effects are 
confined to thin boundary layers ahead of any point of separation. The flow exterior to 
the boundary layer can be considered as strictly inviscid and for a prograde upstream 
velocity it assumes a wavelike character. Consequently, upstream it must satisfy the 
radiation condition 

rJ(+ + r sin 8)  --f 0. 

The problem as posed is formally strictly two-dimensional and as such places no 
restriction on the smallness of the Rossby number. However, it can only be the proper 
limit of a flow configuration bounded vertically by horizontal planes provided it is 

(8) 
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1, where H is the depth of the system, 
We require that Re 9 1. Geophysical applications require t h a t  

Ro < 1 and E ,  = v / ( f o H 2 )  

P = P'R2/ U .  

understood that 
and Et/Ro < 1. 
p < O ( l ) ,  where 

3. The exterior solution 

implies that 

and, in the absence of closed streamlines, we obtain that 

Exterior to the boundary layer the right-hand side of (1) can be dropped, which 

(9) 

V2q5+,8(rsinOk #) = 0, (10) 

V2q5 +Pr sin 8 = F(q5) 

where + and - correspond to prograde and retrograde flow conditions respectively 
The perturbation stream function @ is governed by 

V2$ ? pII. = 0, (11) 

where $ = q52rsin8. (12) 

$ = a + s i n e  on r =  1, (13) 

The inviscid boundary condition on the cylinder is u, = 0, which implies that 

where a is an arbitrary constant arising from the fact that the flow domain is multiply 
connected. In the limit of p+ 0 the non-uniqueness is related to an arbitrary r 
independent circulation that can be added to the solution. When p + 0 such a circula- 
tion is r dependent. We demand symmetry about the x axis and consequently set a 
equal to zero. Such an assumption seems appropriate for an upstream uniform flow 
which started from rest and provided that vortex shedding arising from possible 
flow separation does not alter the symmetry assumption. Away from the cyIinder we 
require rh,+ + 0 upstream for prograde flow; (14) 

$ -+ 0 as r --f m for retrograde flow. (15) 

The solution for the inviscid prograde flow problem has been found by Miles (1968) 
in the context of lee waves generated by stratified flow past a semi-circular obstacle. 
Adapting Miles' solution, we have 

W 

@ = c gq@q, 

$, = a,(Y,(P+r) sin@ + c bq, J,(Pb) sinpo), 

a, = - n ( g p , ) q / ( q  - 1 )  !, 

q=1 
a 

p=l  

I = 0 (q-p even), 
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The solution of the boundary-layer equations requires evaluation of the inviscid 
tangential velocity along the cylinder. We obtain 

The coefficients g, given in (16) are determined by solving an infinite set of linear 
equations. Approximate sohtions are obtained by truncation. We have retained only 
the first three Fourier components in the expansion for $, which is adequate for the 
rangep < 4 (Miles 1968). It should be pointed out that when p* N 1.27 closed stream- 
lines appear and this violates the assumption leading to (10). The flow field con- 
tained within the closed streamlines is spun down because of $he presence of 
Ekman layers (Ingersoll 1969) which although ignored in our analysis will eventually 
exert their influence on the closed circulation. For the range of parameters considered 
here the spin-down time is much longer than the advection time scale and the inviscid 
exterior solution as well as the boundary layer along the cylinder are established long 
before the closed circulation of the exterior solution is affected by viscosity. Both 
boundary-layer structure and flow separation will suffer some modification when the 
exterior closed circulation is spun down but this will take place only for times com- 
parable to  the spin-down time. 

The inviscid solution for the retrograde flow dows not possess wavelike character 
and therefore it is obtained with little effort : 

(18) 

where K O  and K ,  are modified Bessel functions of the second kind of orders zero and 
one respectively. 

$ = - K,(@r) sin 8/Kl(p*), uo(r = 1) = [1+  &3i(Ko(/3*) + K,(p+)) ]  sin 8, 

4. The boundary-layer structure 
We consider first prograde flow. The vorticity equation (1) indicates that relative 

vorticity can be generated either by advection of fluid columns across constant y 
lines or at solid boundaries. I n  the boundary layer the shear vorticity dominates 
both curvature vorticity and the p-effect (p  6 O( 1 ))such that the appropriate vorticity 
balance near the cylinder is 

a Z u  a2u a3u 

asa7 a72 a73 
U- + v- - - = max O( l/Re*, PIRe)) 

as more careful analysis demonstrates. s and 7 are co-ordinates measured along and 
normal t o  the wall respectively with s increasing in the streamwise direction. In 
particular s = rr - 8, 7 = ( r  - 1)  Re), u = - uo and v = Re* u,. The continuity equation 
becomes au av 

as a7 
-+- = O(l/Re+).  

The relevant boundary conditions are 

u = v = O  on r = O ,  

u - f  U,(s) as 7 - t a  
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FIGURE 1. Asymptotic tangential velocity along the cylinder for prograde flows. 

with U,(s) obtained from (17) .  Equation (19) can be integrated with respect to 7 to 
yield 

The outcome of this analysis is that the dynamics of the boundary-layer flow is 
identical with that of the classical non-rotating case where the influence of /3 is felt only 
through the asymptotic boundary condition (22). The analysis for retrograde flow 
follows along identical lines; the only difference is that U,(s) is now determined by (18). 

5. Results and discussion 
The discussion of the last paragraph implies that the p-control of the boundary- 

layer structure is essentially kinematic. It is the divergence of the asymptotic tangen- 
tial velocity which affects the advection of vorticity generated at  the wall and con- 
sequently the wall shear stress. 

For prograde flow adequate approximate expressions for the asymptotic tangential 
velocity arc 

U,(s) = Zsins, = 0, 

urn(s) = 4.3258 sin s - 2.4326 sin 2s + 0.5592 sin 3s, 

U,(s) = 2.0372 sins - 0.4073 sin 2s + 0.0357 sin 3.9, j? = 1 ,  1 (24) 
/3 = 4. 

These expressions are plotted in figure 1 ,  which tells us that an increase in ,.8 shifts 
downstream the tendency for av/aq > 0 and consequently it delays positive transverse 
advection of vorticity from the wall. In  other words, largerpsuggests thinner boundary 
layers. Note, however, that this is only a @-effect as implied by (17 ) .  

The pressure gradient - Urn dU,/ds appearing in (23) is explicitly a linear function 
of p but the dependence on p is actually stronger since higher harmonics become more 
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FIGURE 2. Boundary-layer pressure gradient for prograde flows. 

important as /3 increases. This behaviour is depicted in figure 2, which shows the strong 
pressure gradients that develop for large p. The existence of an adverse pressure 
gradient is necessary for the occurrence offlow separation. Figure 2 indicates that the 
region of adverse pressure gradient shifts toward the rear stagnation point as p 
increases but for moderate ,13 the dependence is 0(/33) only. (The sign change of the 
pressuregradient is determined by dUmlds and this is related to av/ar and hence to the 
transverse vorticity advection discussed earlier.) Note that the strong pressure gra- 
dients and the positive transverse vorticity advection that develop for large ,i3 suggest 
that the point of separation shifts closer to the point where dUJds = 0 asp increases. 

The boundary-layer equations were solved using well-established techniques 
(Cebeci, Smith & Wang 1969). The dependence on /3 of the shear stress along the 
cylinder is shown in figure 3. With the aid of figure 1 it can be inferred that near the 
forward stagnation point p slightly decreases the shear stress along the wall. This is a 
consequence of a weakened negative transverse advection of vorticity. Downstream 
the trend is reversed, the shear stress increases and separation is delayed. 

In contrast to the case treated by Merkine & Solan (1979) the complicated p- 
dependence of the asymptotic tangential velocity prohibits deriving a simple necessary 
condition for flow separation. Thus in order to determine the value of p necessary for 
the existence of a fully attached flow, assuming that separation can be prohibited for 
sufficiently large values of p, the problem has to be solved for successively larger 
values of ,I?. We have not pursued this course for several reasons. For large values of /3 
the exterior inviscid solution becomes less realistic with the appearance of vigorous 
closed circulations, not to mention the large number of terms necessary to calculate 
the asymptotic tangential velocity. Furthermore, for a given Reynolds number the 
boundary-layer approximation deteriorates with an increasing error of O(P/Re*).  
FinaIly geophysical applications are limited to p < O(1). 

Profiles of the transverse velocity v are shown in figures 4 (a,  b ) .  In  the outer region 
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FIGURE 3. Shear stress along the cylinder for prograde flows. 

of the boundary layer the transverse dependence of v is consistent with the streamwise 
dependence of the asymptotic tangential velocity through the continuity equation. 
This is also true throughout the boundary layer in regions where the divergence of 
Um(s) is not small. However, near the stationary point of Urn the inner region of the 
boundary layer is dominated by the viscosity-induced streamline displacement 
effect and v is positive (see v a t  120" for /3 = 4). 

Representative profiles of the tangential velocity at  various stations along the 
cylinder are shown in figure 5. All profiles coincide at  the forward stagnation point, 
i.e. s = 0 (see also figure 3) but evolve differently in the streamwise direction. Con- 
sistently with figure 3 the inflexion point appears first for smaller values of p. 

We discuss now the solution for retrograde flows. Equation (18) tells us that the 
asymptotic tangential velocity has the same functional form as for the non-rotating 
case (p  = 0) but with a different multiplicative constant. (For example, U, = 2.7 sins 
for p = 1 in contrast to lJa = 2 sin s for ,5 = 0. For /3 > O( 1) an inviscid boundary layer 
develops next to the cylinder but this is of no consequence for our discussion.) It 
follows that renormalization can reduce the boundary-layer equations to the case of 
p = 0 with a separation angle identical with that of non-rotating flows. We conclude 
that the /3-effect does not inhibit separation for retrograde flows. 

The experimental evidence available for comparison with the analysis presented in 
this work is very limited and difficult to interpret. White's (1971) experimental set-up 
is the closest to our model; however, results are presented only for prograde flow 
with /3 = 4. There is a qualitative agreement with the inviscid theory and consistently 
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FIGURE 4. Transverse velocity profiles at  various stations along 

the cylinder for prograde flows. (a )  /3 = 1 ;  ( b )  /3 = 4. 
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1 

FIGWE 5 .  Tangential velocity profiles a t  various stations along the cylinder for prograde flows. 

with our results flow separation does not seem to occur for angles smaller than 277 
measured from the forward stagnation point. It is impossible to  determine, however, 
whether the flow remains fully attached or that  separation occurs and small-scale 
eddies form near the rear stagnation point. 

I n  the early Fifties experimental investigations of rotating flows past obstacles 
of various shapes were performed by Fultz & Long (1951), Long (1952), Fultz and 
Frenzen (1955) and Frenzen (1955). The basic apparatus was a hemispherical shell, 
within which obstacles of various shapes could be towed along latitude circles. Some 
of the experiments were concerned with obstacles that  completely filled the annulus 
gap. It is difficult to draw conclusions even from those experimental results which 
are pertinent to our analysis since both p and the ambient flow conditions changed 
considerably over the latitudinal extent of the obstacle. Nevertheless, the flow- 
separation-inhibiting effect of ,8 for prograde flows can be inferred from Frenzen (1955). 
When the obstacle was placed sufficiently to the south a steady wave pattern was ob- 
served in the lee. As the obstacle was moved northward the wavy structure weakened 
and travelling cyclonic eddies were periodically shed from t,he obstacle. This is in 
accord with our results since beta, the gradient of the earth’s vorticity, is maximal a t  
the equator and zero a t  the north pole. Thus flow separation is more likely to occur for 
obstacles which are placed further to  the north, i.e. for smaller values of p. 

The experiments performed for retrograde flows show a different response. The 
flow field is no longer wavy in character, but this seems to be the only agreement with 
the inviscid theory. It looks as if the wake of the obstacle is dominated by viscous 
effects. Both Long (1952) and McCartney (1975) report that the latitudinal belt 
traversed by tall obstacles is blocked. This can be attributed to the circular geometry 
where the viscous wake extends all the way around the annulus to form a part of the 
oncoming flow. I n  a frame of reference moving with the obstacle eddying motion is 
observed (Fultz & Long 1951; Long 1952), and the investigators report that  the edges 
of the blocked latitudinal belt are unsteady and that large-scale vortices form down- 
stream of the obstacle. McCartney (1975) suggests shear-layer instability of the edges 
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of the wake as a cause for this usteadiness but it could well be a regular vortex shedding 
from the cylinder. 

The analysis that has been presented above suggests that $ inhibits boundary- 
layer separation for prograde flows but it exerts no influence on the boundary-layer 
structure when the flows are retrograde. The limited experimental evidence available 
tends to support this conclusion. Our analysis can also be extended, with not much 
effort, to include the effect of lateral walls. The problem is, however, ‘considerably 
more difficult when E$/Ro = O( 1)  for the exterior flow is strongly affected by vorticity 
spin-down and the exterior solution is inherently nonlinear. 

It should be emphasized that our investigation is restricted to a cylinder that extends 
throughout the depth of the system. If the cylinder occupies only a fraction of the 
depth then /3 and the ratio of the fractional height of the cylinder to Ro determine 
whether or not an inertial Taylor column exists above the cylinder (McCartney 1975). 
The exterior solution for a short cylinder with an inertial Taylor column attached to 
it is broadly similar to the case of a cylinder that extends throughout the depth of 
the system (McCartney 1975) but the boundary-layer structure existing along the 
edges of the Taylor column could very well be different to the boundary-layer struc- 
ture considered here. Nevertheless, rotation exhibits a strong constraint for two- 
dimensionality in rapidly rotating systems and it seems possible that a Taylor column 
might shed vortices if the conditions for boundary-layer separation along the trun- 
cated cylinder and inertial Taylor formation occur simultaneously. The experimental 
apparatus described by Vaziri (1977) is most suitable for checking this conjecture ex- 
perimentally. Support for such hypothesis is provided by Takematsu & Kita (1978) 
who observed vortex shedding from a Taylor column in a retrograde flow where the 
/3-effect was simulated by the slope of the parabolic free surface. A thorough survey 
of the various downstream effects in rotating systems can be found in a recent 
review by Baines & Davies (1979). 

Finally, we would like to comment that the geophysical relevance of the boundary- 
layer analysis and the corresponding laboratory experiments referred to earlier is 
probably restricted to oceanography only. With $’ N 1.6 x rn-ls-l corresponding 
to mid-latitude conditions and typical velocities of 0- 1 m s-l for the ocean and 10 m s-1 
for the atmosphere we find that /3 = O( 1) for oceanic length scales of O( 100 km) and 
atmospheric length scales of O( 1000 km). 

The author acknowledges helpful comments made by Dr P. A.  Davies. This research 
was supported by a grant from the United States-Israel Binational Science Founda- 
tion (BSF), Jerusalem, Israel. 
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